SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY
 SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

CALCULUS

COURSE TITLE:
MTH577-4
CODE NO, :

SEMESTER;

ELECTRICAL/ELECTRONIC/COMPUTER TECHNOLOGY
PROGRAM:
JOHN REAL
AUTHOR:
JULY 1993
JULY 1992
DATE:
PREVIOUS OUTLINE DATED

TOTAL CREDIT HOURS: 64

PREREQUISITE (S) : MTH551

I. PHILOSOPHY/GOALS:

This course deals with integration of algebraic functions, applications of simple integration, velocity, acceleration, areas, volumes, differentiation and integration of transcendental functions, and methods of integration, including some applications to electrical/electronics data.

II. STUDENT PERFORMANCE OBJECTIVES:

The basic objectives are that the student develop an understanding of the methods studied, knowledge of the facts presented, and an ability to use these in the solution of problems. To accomplish these objectives, exercises are assigned. Tests questions will be of near equal difficulty to questions assigned from the exercises. The level of competency demanded is the level required to obtain an overall passing average on the tests. the material to be covered is listed below:

IV, TOPICS TO BE COVERED:

1. Applications of Integration
2. Differentiation of Transcendental Functions
3. Methods of Integration

TIME FRAME:
14 periods
25 periods

25 periods

III. TERMINAL PERFORMANCE OBJECTIVES - MTH577

After studying each of the following topics, the student should be able to:

TOPIC 1:

1. Solve problems involving distance-velocity-acceleration, current-voltage-charge using integration.
2. Find areas (between two curves) using horizontal and vertical elements and definite integrals.
3. Find the volume of a solid of revolution using the disk or shell method.

TOPIC 2:

1. Find derivatives of expressions containing sine or cosine functions.
2. Find derivatives of other trigonometric functions.
3. Find derivatives of inverse trigonometric functions.
4. Solve worded problems which involve trigonometric functions.
5. Find derivatives of logarithmic functions - any constant base.
6. Find derivatives of exponential functions - any constant base.
7. Solve worded problems involving logarithmic of exponential functions.

TOPIC 3:

1. Integrate any type of algebraic or transcendental function using the general power formula for integration.
2. Find integrals of expressions leading to a natural logarithm form
3. Evaluate integrals of exponential expressions.
4. Evaluate integrals of trigonometric functions (using rules for derivatives or trigonometric functions).
5. Find integrals of other trigonometric functions requiring the use of trigonometric identities.
6. Find integrals of algebraic functions leading to inverse trigonometric functions (using rules for derivatives of inverse trigonometric functions.

CALCULUS

COURSE NAME

rV. LEARNING ACTIVITIES:
1.0 Applications of Integration
1.1 Applications of the indefinite integral
1.2 Areas by integration
1.3 Volumes by integration
1.4 Review Exercise
2. 0 Dif,ferentiation of

Transcendental Functions
2.1 Derivatives of sine and cosines functions
2.2 Derivatives of other trig, functions
2.3 Derivatives of inverse
trigonometric functions
2.4 Applications
2.5 Derivatives of logarithmic functions
2.6 Derivatives of exponential functions
2.7 Applications
2.8 Review

MTH577-4

COURSE NUMBER

Chapter 25
Questions 1-20, 23, p. 769

Questions 1-27, p. 775
Questions 1-26, p. 782
Questions 1-22, p. 802

Ch. 26

Questions 1-50, p.809

Questions 1-46, p.813

Questions 1-41, p.817

Questions 1-8, 11-16, p.821
Questions 1-48, p.826

Questions $1-48$, p. 829

Questions 1-32, p.833
Questions 1-50, p.835

CALCULUS
MTH577-4

COURSE NAME

COURSE NUMBER

V. LEARNING ACTIVITIES: (cont'd)
3.0 Methods of Integration
3.1 The general power formula
3.2 The basic logarithmic form
3.3 The exponential form
3.4 Basic trigonometric forms
3.5 Other trigonometric forms
3.6 Inverse trigonometric forms
3.7 Review

Chapter 27
Questions 1-24 p. 843
Questions 1 - 28 , p. 846
Questions 1 - 24 , p. 850
Questions 1 - 24 , p. 853
Questions 1 - 28, p. 858
Questions 1 - 28, p. 862
Questions 1 - 36 , p. 874

VI- METHOD OF EVALUATION:

1. Three - four tests per semester.
2. Final grade is a weighted average of these tests.

$$
\begin{aligned}
90-100 \% & =\text { A+ } \\
80-89 \% & =A \\
65-79 \% & =B \\
55-64 \% & =C \\
0-54 \% & =R \text { (or } X \text {) }
\end{aligned}
$$

Under special circumstances an X grade may be assigned to allow the student to continue with the next math course. If unsuccessful with this next course, both courses would have to be repeated.

All tests are scheduled in advance. Hence, attendance is mandatory. Unexcused absence from a test will result in a mark of zero for that test. If a student is prevented from writing a test by illness, the instructor should be notified before the time of the test. Upon return to class, the student should see the instructor immediately to arrange a time for a make-up test. The student should have a note from the college nurse or a doctor.

COXJRSE NAME

VII. REQUIRED STUDENT RESOURCES:

Washington, Basic Technical Mathematics with Calculus, Fifth edition, metric version. Benjamin/Cummings Pub. Co. 1990

VIII. SPECIAL NOTES:

Students with special needs (e.g. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

